46 research outputs found

    Lower Bounds for Depth Three Arithmetic Circuits with Small Bottom Fanin

    Get PDF
    Shpilka and Wigderson (CCC 99) had posed the problem of proving exponential lower bounds for (nonhomogeneous) depth three arithmetic circuits with bounded bottom fanin over a field F of characteristic zero. We resolve this problem by proving a N^(Omega(d/t)) lower bound for (nonhomogeneous) depth three arithmetic circuits with bottom fanin at most t computing an explicit N-variate polynomial of degree d over F. Meanwhile, Nisan and Wigderson (CC 97) had posed the problem of proving superpolynomial lower bounds for homogeneous depth five arithmetic circuits. Over fields of characteristic zero, we show a lower bound of N^(Omega(sqrt(d))) for homogeneous depth five circuits (resp. also for depth three circuits) with bottom fanin at most N^(u), for any fixed u < 1. This resolves the problem posed by Nisan and Wigderson only partially because of the added restriction on the bottom fanin (a general homogeneous depth five circuit has bottom fanin at most N)

    An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

    Get PDF
    We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999]

    Multi-k-ic Depth Three Circuit Lower Bound

    Get PDF
    In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials in every product gate of the circuit. This model is a natural generalization of multilinear depth three circuits that allows the formal degree of the circuit to exceed the number of underlying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number of variables). The problem of proving lower bounds for depth three circuits with high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi [7] on depth reduction to high formal degree depth three circuits. In this work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k

    Separation Between Read-once Oblivious Algebraic Branching Programs (ROABPs) and Multilinear Depth Three Circuits

    Get PDF
    We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following: 1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) such that every ROABP computing it requires 2^{Omega(n)} size. 2. Any multilinear depth three circuit computing IMM_{n,d} (the iterated matrix multiplication polynomial formed by multiplying d, n * n symbolic matrices) has n^{Omega(d)} size. IMM_{n,d} can be easily computed by a poly(n,d) sized ROABP. 3. Further, the proof of 2 yields an exponential separation between multilinear depth four and multilinear depth three circuits: There is an explicit n-variate, degree d polynomial computable by a poly(n,d) sized multilinear depth four circuit such that any multilinear depth three circuit computing it has size n^{Omega(d)}. This improves upon the quasi-polynomial separation result by Raz and Yehudayoff [2009] between these two models. The hard polynomial in 1 is constructed using a novel application of expander graphs in conjunction with the evaluation dimension measure used previously in Nisan [1991], Raz [2006,2009], Raz and Yehudayoff [2009], and Forbes and Shpilka [2013], while 2 is proved via a new adaptation of the dimension of the partial derivatives measure used by Nisan and Wigderson [1997]. Our lower bounds hold over any field

    On the size of homogeneous and of depth four formulas with low individual degree

    Get PDF
    International audienceLet r ≥ 1 be an integer. Let us call a polynomial f (x_1,...,x_N) ∈ F[x] as a multi-r-ic polynomial if the degree of f with respect to any variable is at most r (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output is syntactically forced to be a multi-r-ic polynomial and refer to these as multi-r-ic circuits. We prove lower bounds for several subclasses of such circuits. Specifically, first define the formal degree of a node α with respect to a variable x_i inductively as follows. For a leaf α it is 1 if α is labelled with x_i and zero otherwise; for an internal node α labelled with × (respectively +) it is the sum of (respectively the maximum of) the formal degrees of the children with respect to x_i. We call an arithmetic circuit as a multi-r-ic circuit if the formal degree of the output node with respect to any variable is at most r. We prove lower bounds for various subclasses of multi-r-ic circuits

    Reconstruction of Full Rank Algebraic Branching Programs

    Get PDF
    An algebraic branching program (ABP) A can be modelled as a product expression X_1 X_2 ... X_d, where X_1 and X_d are 1 x w and w x 1 matrices respectively, and every other X_k is a w x w matrix; the entries of these matrices are linear forms in m variables over a field F (which we assume to be either Q or a field of characteristic poly(m)). The polynomial computed by A is the entry of the 1 x 1 matrix obtained from the product X_1 X_2 ... X_d. We say A is a full rank ABP if the w^2(d-2) + 2w linear forms occurring in the matrices X_1, X_2, ...X_d are F-linearly independent. Our main result is a randomized reconstruction algorithm for full rank ABPs: Given blackbox access to an m-variate polynomial f of degree at most m, the algorithm outputs a full rank ABP computing f if such an ABP exists, or outputs \u27no full rank ABP exists\u27 (with high probability). The running time of the algorithm is polynomial in m and b, where b is the bit length of the coefficients of f. The algorithm works even if X_k is a w_{k-1} x w_k matrix (with w_0 = w_d = 1), and v = (w_1, ..., w_{d-1}) is unknown. The result is obtained by designing a randomized polynomial time equivalence test for the family of iterated matrix multiplication polynomial IMM_{v,d}, the (1,1)-th entry of a product of d rectangular symbolic matrices whose dimensions are according to v in N^{d-1}. At its core, the algorithm exploits a connection between the irreducible invariant subspaces of the Lie algebra of the group of symmetries of a polynomial f that is equivalent to IMM_{v,d} and the \u27layer spaces\u27 of a full rank ABP computing f. This connection also helps determine the group of symmetries of IMM_{v,d} and show that IMM_{v,d} is characterized by its group of symmetries

    Multi-k-ic depth three circuit lower bound

    Get PDF
    Abstract In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials in every product gate of the circuit. This model is a natural generalization of multilinear depth three circuits that allows the formal degree of the circuit to exceed the number of underlying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number of variables). The problem of proving lower bounds for depth three circuits with high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi [GKKS13a] on depth reduction to high formal degree depth three circuits. In this work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k

    Learning Generalized Depth Three Arithmetic Circuits in the Non-Degenerate Case

    Get PDF
    corecore